

Recommender System to Support Chart Constructions with Statistical Data

Taissa Abdalla Filgueiras de Sousa tsousa@inf.puc-rio.br

Simone Diniz Junqueira Barbosa simone@inf.puc-rio.br

Difficulty in the construction of efficient charts

"the basic problem of chart construction is the selection of representation." (Bertin, 1918)

- "... only few have skills to design effective graphic presentations of information" (Mackinlay, 2007)
 - Example: Was there an increase in the total number of people with income higher than 5 monthly minimum wages between 2005 and 2007?

Research question

How can we support novice users to create efficient visualizations with statistical data?

Users:

 Students and professionals not related to statistics, journalism or data analysis.

Efficient visualizations:

 Those that can answer some specific questions in a single instant of perception

- 1. Rules of graphic system
- 2. Techniques for data visualization
- 3. Research of Visualization tools

4. Evaluation with users using different visualization tools

Requirements

- 1. Generate efficient, clear and accurate charts
- 2. Motivate analysis
- 3. Allow many types of construction and math operations. Ex: calculate average, sum and difference
- 4. Develop precise meanings of view
- 5. Provide visual feedback, automatic visualizations and default values.
- 6. Provide an interactive help feature

Preliminary studies

- Visualization ontology that interrelates user questions, data features and efficient visualizations
- Techniques for recommender systems

The ViSC ontology

Example of questions and tasks

- Where is there more people in the range of 14 years of education? (find extreme)
- What was the ranking of places in the range of 14 years of education? (sort)
- What was the PISA average score in the selected countries (calculate derived values)
- What was Canada's PISA score in math in 2003? (retrieve value)

The ViSC ontology **Exemple of task class**

The ViSC recommender system

Knowledge-based Recommender System

Background data	Input data	Process
Feature of items . Knowledge of how the items meet users' needs.	Description of needs or user interests.	Infer a correspondence between an item and a user need.

Items: Efficient visualizations

User need: Answer his question

The interface

Selection of theme and 2 dimensions

ViSC

Visualization with Smart Charts

VISC is a visualization tool that provides charts through a smart way. You just need to select the theme and the two dimensions you may want to compare. Thus, through picking a question you want to answer, you will have efficient visualizations.

Theme

Education of persons of 10 years and o

Do you want a visualization to compare these variables?

In horizontal Axis:

place (28)
In Legend:
classOfYearsOfStudy (19)

YES! Start ViSC now!

Available visualization

Available visualizations

The interface

Interaction with questions

Expected contributions

Develop interactive solution for visualization construction by novice users;

Secondary contributions

- Indirect evaluation of the visualization ontology
- Motivation potential in learning by analysis

Evaluation

How do the related questions influence the task performance and the generated visualizations?

Methods

- Semiotic Inspection Method SIM
- Retrospective Communicability Evaluation RCE (Retrospective Think Aloud + Tagging from Communicability Evaluation Method)

Preparation

- User profile: 6 undergraduate or master's degrees students from exact science areas at PUC
- Selected tools: ViSC and Tableau

Users	Task 1	Task 2
Odd (group 1)	ViSC	Tableau Public
Even (group 2)	Tableau Public	ViSC 15

Well understood parts of the **ViSC** metamensage

- Include values and select the form of visualization.
- Visualization recommendations based on questions.
- You only need to find the question and analyse one or more recomended visualizations.

Well understood parts of the **Tableau** metamensage

- You can do math operations
- You can change visualization preferences
- Shows when charts are active or inactive
- Transform data in accordance to the selected visualization

Not understood parts of ViSC metamensage

Recommendations were classified by score

```
What is ranking of country in points of 2006? (for discipline=Reading, gender=Total)

It plays that is ranking of country in points of 2006? (for discipline=Reading, gender=Total)

It plays that is ranking of country in points of 2006? (for discipline=Reading, gender=Total)

Solve the country in points of 2006? (for discipline=Reading, gender=Total)

Solve that is ranking of country in points of 2006? (for discipline=Reading, gender=Total)
```


Not understood parts of Tableau metamensage

Explains why each visualization is active or inactive

Not understood parts of Tableau metamensage

• Interaction and chart changes can change variable features.

Evaluation

Results

- "(...) I decided to see if there was any questions that could help me. And I found!" (U03)
 - "(...) I was looking for something better to improve this chart or to put all bars together in a single color. (...) I found exactly what I had done. It was already there." (U05)
- "(...) It might have the question I want to answer (...) I selected the questions and then I changed to "sum" and I found the correct chart. (U07)

"I looked at straight to the questions seeking for something to help me. I clicked on this question (...) but the chart (...) was really bad.." (U04)

Evaluation

ViSC

About the questions

The questions had an important influence on the results.

Users understood how they were generated

Score was not observed

A user did not read the questions

A user did not use the questions

The questions helped to find problems in the ontology

HCI problems

Tableau

About the window Show me

- Thumbnails helped user to select charts

Problems in undestanding some concepts

Evaluation

How do the related questions influence the task performance and the generated visualizations?

- Helped
 - Quick answers
 - New visualizations
 - Check with previous answer
- Did not influence
 - Not used
- Misled
 - Generate inefficient chart

Conclusions

Goal

 Develop a solution to support novice users in chart construction with statistical data

Solution

ViSC with recommender system through common questions

Evaluation

 Questions were efficient solutions to support chart construction by novice users

Conclusions

Contributions

- interactive solution to visualization construction by novice users;
 achieved
- Indirect evaluation of the visualization ontology: improvement is required
- Potential in learning by analysis motivation: new evaluation is recommended

Conclusions

Future work

- Expansion of evaluation
 - New group of users
 - Classification of the ontology
 - Evaluate learning potential
- Correction and extension of the ontology
- Hybrid recommender systems

Thank you!